Monitoring Tutorial#
#
This tutorial will demonstrate how to use NoisePy’s output to perform monitoring on correlations: measuring of changes in seismic velocities and intrinsic atteunation parameters (for single-station measurement).
Step 0. Import used modules and setup the config parameters of the noisepy output
Step 1. Cross correlate
Step 2. Read data from the NoisePy CCstore
Step 3. Look at invidual traces and make dv/v measurements
Step 4. Measure dv/v on all cross-components
Step 5. Measure attenuation parameter: intrinsic absorption parameter b
Step 6. Output results as a csv file
Step 0 - Import modules and setup config parameters#
import os, logging
import numpy as np
import matplotlib.pyplot as plt
from obspy.signal.filter import bandpass
from datetime import datetime, timezone
from datetimerange import DateTimeRange
from noisepy.seis import noise_module, cross_correlate
from noisepy.seis.io.asdfstore import ASDFCCStore
from noisepy.seis.io.datatypes import ConfigParameters, StackMethod, CCMethod, FreqNorm, RmResp, TimeNorm
from noisepy.seis.io.channel_filter_store import channel_filter
from noisepy.seis.io.channelcatalog import XMLStationChannelCatalog # Required stationXML handling object
from noisepy.seis.io.s3store import SCEDCS3DataStore # Object to query SCEDC data from on S3
from noisepy.seis.io.plotting_modules import plot_substack_cc
from noisepy.monitoring.monitoring_utils import * # modules for monitoring utils
from noisepy.monitoring.monitoring_methods import stretching
from noisepy.monitoring.attenuation_utils import * # modules for attenuation monitoring
logger = logging.getLogger(__name__)
path = os.path.expanduser("./") # for local runs
os.makedirs(path,exist_ok=True)
start_date = datetime(2019, 1, 1, tzinfo=timezone.utc)
end_date = datetime(2019, 1, 31, tzinfo=timezone.utc)
print(start_date, end_date)
The config parameters of ccstore data
config = ConfigParameters() # default config parameters which can be customized
config.start_date = start_date
config.end_date = end_date
config.sampling_rate = 20 # (int) Sampling rate in Hz of desired processing (it can be different than the data sampling rate)
config.cc_len = 600 # (int) basic unit of data length for fft (sec)
config.ncomp = 3 # 1 or 3 component data (needed to decide whether do rotation)
config.acorr_only = True # only perform auto-correlation or not
config.xcorr_only = False # only perform cross-correlation or not
# criteria for data selection
config.lamin = 31 # min latitude
config.lamax = 42 # max latitude
config.lomin = -124 # min longitude
config.lomax = -115 # max longitude
config.networks = ["CI"] # network codes
config.stations = ["LJR"] # station names, e.g. ["LJR","DLA","LAF"]
config.channels = ["BH?", "HH?"]
# pre-processing parameters
config.step = 600 # (int) overlapping between each cc_len (sec)
config.stationxml = False # station.XML file used to remove instrument response for SAC/miniseed data
config.rm_resp = RmResp.INV # select 'no' to not remove response and use 'inv' if you use the stationXML,'spectrum',
config.freqmin = 0.05
config.freqmax = 8.0
config.max_over_std = 10 # threshold to remove window of bad signals: set it to 10*9 if prefer not to remove them
# TEMPORAL and SPECTRAL NORMALISATION
config.freq_norm = FreqNorm.RMA # choose between "rma" for a soft whitenning or "no" for no whitening. Pure whitening is not implemented correctly at this point.
config.smoothspect_N = 1 # moving window length to smooth spectrum amplitude (points)
# here, choose smoothspect_N for the case of a strict whitening (e.g., phase_only)
config.time_norm = TimeNorm.ONE_BIT # 'no' for no normalization, or 'rma', 'one_bit' for normalization in time domain,
# TODO: change time_norm option from "no" to "None"
config.smooth_N = 10 # moving window length for time domain normalization if selected (points)
config.cc_method = CCMethod.XCORR # 'xcorr' for pure cross correlation OR 'deconv' for deconvolution;
# FOR "COHERENCY" PLEASE set freq_norm to "rma", time_norm to "no" and cc_method to "xcorr"
config.stack_method = StackMethod.ALL
# OUTPUTS:
config.substack = True # True = smaller stacks within the time chunk. False: it will stack over inc_hours
config.substack_windows = 24 # how long to stack over (for monitoring purpose)
# if substack=True, substack_windows=2, then you pre-stack every 2 correlation windows.
# for instance: substack=True, substack_windows=1 means that you keep ALL of the correlations
config.maxlag= 60 # lags of cross-correlation to save (sec)
Step 1. Cross correlate.#
This step will read data from S3, cross correlate, store the xcorrs on a local CCStore.
# S3 paths for raw data and stationXML
S3_STORAGE_OPTIONS = {"s3": {"anon": True}} # S3 storage options
S3_DATA = "s3://scedc-pds/continuous_waveforms/" # Continuous waveform data
S3_STATION_XML = "s3://scedc-pds/FDSNstationXML/CI/" # StationXML files for CI network
# S3 data store
timerange = DateTimeRange(config.start_date, config.end_date)
catalog = XMLStationChannelCatalog(S3_STATION_XML, storage_options=S3_STORAGE_OPTIONS) # Station catalog
raw_store = SCEDCS3DataStore(S3_DATA, catalog,
channel_filter(config.networks, config.stations, config.channels),
timerange, storage_options=S3_STORAGE_OPTIONS) # Store for reading raw data from S3 bucket
# CC store
cc_data_path = os.path.join(path, "CCF_ASDF")
cc_store = ASDFCCStore(cc_data_path)
# For this tutorial make sure the previous run is empty
os.system(f"rm -rf {cc_data_path}")
# Cross-correlation
cross_correlate(raw_store, config, cc_store)
# Save config parameters
xcorr_config_fn = 'xcorr_config.yml'
config.save_yaml(xcorr_config_fn)
Step 2: Read data from the NoisePy CCstore#
# This step will read correlations from the NoisePy output ASDF files (ASDFCCStore).
# --- local paths for CCs if CCs had been calculated ---
#cc_data_path = os.path.join(path, "CCF_ASDF")
#cc_store = ASDFCCStore(cc_data_path) # Store for writing CC data
List out available station pairs. Plot a single set of the correlation
pairs_all = cc_store.get_station_pairs()
stations = set(pair[0] for pair in pairs_all)
print('pairs: ',pairs_all)
print('stations: ', stations)
src = "CI.LJR"
rec = "CI.LJR"
timespans = cc_store.get_timespans(src,rec)
print(timespans)
plot_substack_cc(cc_store, timespans[0], 0.1, 1, config.maxlag, False)
Step 3: Look at invidual traces and make dv/v measurements#
The config parameters for time-lapse seismic velocity measurement.
config_monito = ConfigParameters_monitoring() # default config parameters which can be customized
# --- parameters for measuring velocity changes ---
# pre-defined group velocity to window direct and code waves
config_monito.vmin = 2.0 # minimum velocity of the direct waves -> start of the coda window
config_monito.lwin = 20.0 # window length in sec for the coda waves
# basic parameters
config_monito.freq = [0.25, 0.5, 2.0] # targeted frequency band for waveform monitoring
nfreq = len(config_monito.freq) - 1
config_monito.onelag = False # make measurement one one lag or two
config_monito.norm_flag = True # whether to normalize the cross-correlation waveforms
config_monito.do_stretch = True # use strecthing method or not
# parameters for stretching method
config_monito.epsilon = 0.05 # limit for dv/v (in decimal)
config_monito.nbtrial = 200 # number of increment of dt [-epsilon,epsilon] for the streching
# coda window
config_monito.coda_tbeg = 2.0 # begin time (sec) of the coda window in lag time
config_monito.coda_tend = 8.0 # end time (sec) of the coda window in lag time
# --- parameters for measuring attenuation ---
config_monito.smooth_winlen = 5.0 # smoothing window length
config_monito.cvel = 2.6 # Rayleigh wave velocities over the freqency bands
config_monito.atten_tbeg = 2.0
config_monito.atten_tend = 10.0
config_monito.intb_interval_base = 0.01 # interval base of intrinsic absorption parameter for a grid-searching process
Choose a station pair for further measurement
sta_pair = pairs_all[0]
src_sta = src
rec_sta = rec
timespans = cc_store.get_timespans(src,rec)
print(src_sta,rec_sta)
print(timespans)
Calculate and define the size of the data array : number of windows vs number of points.
MAX_MEM = 4
# calculate the number of segments
num_chunk = len(timespans)
#num_segmts, npts_segmt = calc_segments(config, len(timespans)*config.ncomp**2, MAX_MEM)
num_segmts, npts_one_segmt = calc_segments(config, len(timespans), MAX_MEM)
print(f"there are ",num_segmts," segments/windows and ",npts_one_segmt," points in each segments and overall",num_chunk," number of time chunks")
Declare arrays for reading in correlation data.
nccomp = config.ncomp**2
cc_array = np.zeros((nccomp*num_chunk * num_segmts, npts_one_segmt), dtype=np.float32)
cc_time = np.zeros( nccomp*num_chunk * num_segmts, dtype=np.float32)
cc_ngood = np.zeros( nccomp*num_chunk * num_segmts, dtype=np.int16)
cc_comp = np.chararray(nccomp*num_chunk * num_segmts, itemsize=2, unicode=True)
print(cc_array.shape)
Read in data from ASDFCCStore.
iseg = 0
print("timespans: ",timespans)
print("station pair: ",sta_pair)
for ts in timespans:
# read data and parameter matrix
src_chan, rec_chan = sta_pair
# load the n-component data, which is in order in the ASDFCCStore
ch_pairs = cc_store.read(ts, src_sta, rec_sta)
#print(ch_pairs)
for ch_pair in ch_pairs:
src_cha, rec_cha, params, all_data = ch_pair.src, ch_pair.rec, ch_pair.parameters, ch_pair.data
try:
dist, tgood, ttime = (params[p] for p in ["dist", "ngood", "time"])
comp, dt, maxlag = (params[p] for p in [ "comp","dt", "maxlag"])
tcmp1=str(comp)[0]
tcmp2=str(comp)[1]
except Exception as e:
logger.warning(f"continue! something wrong with {src_sta}_{rec_sta}/{src_cha}_{rec_cha}: {e}")
continue
if config.substack:
for ii in range(all_data.shape[0]):
cc_array[iseg] = all_data[ii]
cc_time[iseg] = ttime[ii]
cc_ngood[iseg] = tgood[ii]
cc_comp[iseg] = tcmp1 + tcmp2
iseg += 1
else:
cc_array[iseg] = all_data
cc_time[iseg] = ttime
cc_ngood[iseg] = tgood
cc_comp[iseg] = tcmp1 + tcmp2
iseg += 1
print(len(timespans),iseg)
Once the data is stored in memory, we follow these steps:
bandpass the data in a given frequency band,
stack to get a reference,
measure dv/v, save it into a pandas dataframe
# in single-station cross-component case : enz_system = [ "EN", "EZ", "NZ"]
freq1 = config_monito.freq[0]
freq2 = config_monito.freq[1]
dt = 1/config.sampling_rate
## Choose a targeted component
comp = "EN"
# -- select only the data from the same cross-component cross correlations
# -- and that have sufficiently good windows
indx = np.where( (cc_comp.lower() == comp.lower()) & cc_ngood==1 )[0]
nwin = len(indx) # number of windows to stack.
print("There are %d window in total for stacking"%nwin," (good signal windows)")
# bandpass filter the data.
tcur = np.zeros(shape=(len(indx),npts_one_segmt))
for i in range(len(indx)):
tcur[i,:]=bandpass(cc_array[indx[i]], freq1, freq2, int(1 / dt), corners=4, zerophase=True)
# output stacked data
(
cc_final,
ngood_final,
stamps_final,
tref,
allstacks2,
allstacks3,
nstacks,
) = noise_module.stacking(tcur, cc_time[indx], cc_ngood[indx], config)
# Plot
fig, ax = plt.subplots(3,1)
ax[0].imshow(tcur,extent=[-config.maxlag,config.maxlag,iseg,0],aspect='auto',vmin=-0.001,vmax=0.001)
ax[0].set_title(comp)
ax[0].set_xlabel('Lag-time (sec)')
ax[0].set_ylabel('Window number')
ax[1].set_xlim(-config.maxlag,config.maxlag)
ax[1].plot(np.arange(-config.maxlag,config.maxlag+dt,dt),tref);ax[1].grid(True)
ax[1].set_title('Reference function')
ax[1].set_xlabel('Lag-time (sec)')
ax[1].set_ylabel('Amplitude')
ax[2].plot(ngood_final,'.-');ax[2].grid(True)
plt.tight_layout()
First, we will explore the stability of the correlations with respect to the reference (correlation coefficient), using the coda window of the config_monito parameters.
# define the window index for positive and negative lag time
pwin_indx, nwin_indx = window_indx_def(npts_one_segmt, config_monito.coda_tbeg, config_monito.coda_tend, dt)
# Calculate the correlation coefficient between the coda and the reference coda
pcor_cc = np.zeros(shape=(nwin), dtype=np.float32)
ncor_cc = np.zeros(shape=(nwin), dtype=np.float32)
for i in range(nwin):
pcor_cc[i] = np.corrcoef(tref[pwin_indx], tcur[i, pwin_indx])[0, 1]
ncor_cc[i] = np.corrcoef(tref[nwin_indx], tcur[i, nwin_indx])[0, 1]
# Plot
plt.figure(figsize=(8,2));plt.grid(True)
plt.plot(pcor_cc, '.-', label='positive lag time')
plt.plot(ncor_cc, '.-', label='negative lag time')
plt.title('Correlation coefficient to the reference')
plt.ylabel('Correlation coefficient')
plt.xlabel('Window number')
plt.legend(loc='best')
Next, measuring dv/v.
# initializing arrays
dvv_stretch = np.zeros(shape=(nwin, 4), dtype=np.float32)
# define the parameters for stretching
para = dict()
para["t"] = np.arange(-config.maxlag,config.maxlag+dt,dt)
para["freq"] = [freq1, freq2]
para["twin"] = [config_monito.coda_tbeg, config_monito.coda_tend]
para["dt"] = dt
Measuring dv/v on one component
for ii in range(nwin):
# casual and acasual lags for both ref and cur waveforms
pcur = tcur[ii, pwin_indx]
ncur = tcur[ii, nwin_indx]
pref = tref[pwin_indx]
nref = tref[nwin_indx]
# functions working in time domain
if config_monito.do_stretch:
(
dvv_stretch[ii, 0],
dvv_stretch[ii, 1],
cc,
cdp,
) = stretching(pref, pcur, config_monito.epsilon, config_monito.nbtrial, para)
(
dvv_stretch[ii, 2],
dvv_stretch[ii, 3],
cc,
cdp,
) = stretching(nref, ncur, config_monito.epsilon, config_monito.nbtrial, para)
# plotting
fig, ax = plt.subplots(2, figsize=(8,3))
ax[0].plot(dvv_stretch[:,0])
ax[0].plot(dvv_stretch[:,2]);ax[0].grid(True)
ax[1].plot(dvv_stretch[:,1])
ax[1].plot(dvv_stretch[:,3]);ax[1].grid(True)
ax[0].legend(('dvv_positive-lag','dvv_negative-lag'),loc='upper right', bbox_to_anchor=(1.35,1))
ax[1].legend(('error_positive-lag','error_negative-lag'),loc='upper right', bbox_to_anchor=(1.35,1))
ax[0].set_title('Estimated dv/v')
ax[1].set_title('Estimated error')
ax[1].set_xlabel('Window number');ax[1].set_ylabel('%');
ax[0].set_ylabel('%');plt.tight_layout()
Step 4: Measure dv/v on all cross-components#
num_indx = 86400//config.substack_len
# select the data from the three cross-component correlations
# that have sufficiently good windows
enz_system = [ "EN", "EZ", "NZ"]
comp = enz_system
indx0 = np.where( (cc_comp.lower() == comp[0].lower()) & cc_ngood==1)[0]
indx1 = np.where( (cc_comp.lower() == comp[1].lower()) & cc_ngood==1)[0]
indx2 = np.where( (cc_comp.lower() == comp[2].lower()) & cc_ngood==1)[0]
indx = np.intersect1d(np.intersect1d(indx0, indx1-(1*num_indx)),indx2-(3*num_indx))
nwin = len(indx)
print("Update the window number for the used components :", nwin)
# print(comp[0].lower(),indx0)
# print(comp[1].lower(),indx1)
# print(comp[2].lower(),indx2)
#print("Final common indx between multiple components: \n",indx)
indx_all = np.zeros(shape=(3,nwin),dtype=np.integer)
indx_all[0]=indx
indx_all[1]=indx+(1*num_indx)
indx_all[2]=indx+(3*num_indx)
# initializing arrays again for multiple cross-component pairs
dvv_stretch = np.zeros(shape=(nwin, 4), dtype=np.float32)
print(src_sta, rec_sta, nwin)
nccomp = len(enz_system)
# initializing arrays
all_dvv = np.zeros(shape=(nccomp, nwin), dtype=np.float32)
all_err = np.zeros(shape=(nccomp, nwin), dtype=np.float32)
results_dvv = np.zeros(shape=(nwin), dtype=np.float32)
results_err = np.zeros(shape=(nwin), dtype=np.float32)
for icomp in range(0,nccomp):
comp = enz_system[icomp]
indx=indx_all[icomp]
# bandpass filter the data.
tcur = np.zeros(shape=(len(indx),npts_one_segmt))
for i in range(len(indx)):
tcur[i,:]=bandpass(cc_array[indx[i]], freq1, freq2, int(1 / dt), corners=4, zerophase=True)
# output stacked data
(
cc_final,
ngood_final,
stamps_final,
tref,
allstacks2,
allstacks3,
nstacks,
) = noise_module.stacking(tcur, cc_time[indx], cc_ngood[indx], config)
for ii in range(nwin):
# casual and acasual lags for both ref and cur waveforms
pcur = tcur[ii, pwin_indx]
ncur = tcur[ii, nwin_indx]
pref = tref[pwin_indx]
nref = tref[nwin_indx]
# functions working in time domain
if config_monito.do_stretch:
(
dvv_stretch[ii, 0],
dvv_stretch[ii, 1],
cc,
cdp,
) = stretching(pref, pcur, config_monito.epsilon, config_monito.nbtrial, para)
(
dvv_stretch[ii, 2],
dvv_stretch[ii, 3],
cc,
cdp,
) = stretching(nref, ncur, config_monito.epsilon, config_monito.nbtrial, para)
all_dvv[icomp]=(dvv_stretch[:, 0]+dvv_stretch[:, 2])/2.0
all_err[icomp]=np.sqrt(dvv_stretch[:, 1]**2+dvv_stretch[:, 3]**2)
print('component: ',comp,' completed. ')
results_dvv += all_dvv[icomp]
results_err += all_err[icomp]**2
results_dvv = results_dvv/nccomp
results_err = np.sqrt(results_err)
print(all_dvv.shape, results_dvv.shape, )
nwin = len(results_dvv)
fig, ax = plt.subplots(2, 2, figsize=(12, 4))
ax[0,0].plot(all_dvv.T)
ax[0,0].legend(enz_system, loc='upper right', bbox_to_anchor=(1.15, 1))
ax[0,0].grid(True)
ax[0,0].set_title('Estimated dv/v')
ax[0,0].set_xlabel('Window number')
ax[0,0].set_ylabel('%')
ax[0,1].plot(all_err.T);ax[0,1].grid(True);#ax[0,1].set_ylim(0,100)
ax[0,1].set_title('Estimated error')
ax[0,1].set_xlabel('Window number')
ax[0,1].set_ylabel('%')
ax[1,0].plot(results_dvv.T);ax[1,0].grid(True)
ax[1,0].set_title('Average dv/v')
ax[1,0].set_xlabel('Window number')
ax[1,0].set_ylabel('%')
ax[1,1].plot(results_err.T);ax[1,1].grid(True)
ax[1,1].set_title('Truncate error')
ax[1,1].set_xlabel('Window number')
ax[1,1].set_ylabel('%')
plt.tight_layout()
Step 5: Measure attenuation parameter – intrinsic absorption parameter b#
Preparing mean-squared values in time seires for measuring intrinsic parameter. We follow these steps:
Prepare smoothed mean-squared data (msv) in a given frequency band,
Get the average msv (msv_mean) from all components, and also the symmetric msv (fmsv_mean)
Measure intrinsic absorption parameter b (results_intb) and transfer it to intrinsic Q (Qi)
from matplotlib.colors import LogNorm
#enz_system = ["EN", "EZ", "NZ"]
nccomp=len(enz_system)
winlen=config_monito.smooth_winlen
# Restore calendar time from cc_time array
win_time=[]
# initializing arrays
tcur_temp1 = np.zeros(shape=(num_chunk*num_segmts, npts_one_segmt))
msv=np.zeros((nccomp, num_chunk*num_segmts, npts_one_segmt))
msv_temp=np.zeros((num_chunk*num_segmts, npts_one_segmt))
# get all components average
for icomp in range(0,nccomp):
comp = enz_system[icomp]
# bandpass filter the data.
tcur_temp2 = np.zeros(shape=(len(indx),npts_one_segmt))
for i in range(len(indx)):
tcur_temp2[i,:]=bandpass(cc_array[indx[i]], freq1, freq2, int(1 / dt), corners=4, zerophase=True)
win_time.append(datetime.utcfromtimestamp(int(cc_time[indx[i]])).strftime("%Y-%m-%dT%H:%M"))
#print(icomp, i , cc_time[indx[i]],datetime.utcfromtimestamp(int(cc_time[indx[i]])).strftime("%Y-%m-%dT%H:%M"))
para = { 'winlen':winlen, 'dt':dt , 'npts': len(tcur_temp2[i])}
msv[icomp,i]=get_smooth(tcur_temp2[i], para)
#print(tcur_temp.shape,msv[icomp].shape)
tcur_temp1[0:len(indx)]=tcur_temp1[0:len(indx)]+tcur_temp2
msv_temp=msv_temp+msv[icomp]
tcur_avef = np.zeros(shape=(nwin, npts_one_segmt))
msv_mean = np.zeros(shape=(nwin, npts_one_segmt))
#print(nwin, tcur_avef.shape, msv.shape, msv_mean.shape)
tcur_avef = tcur_temp1[:nwin,:]/nccomp
msv_mean = msv_temp[:nwin,:]/nccomp
msv_mean = msv_mean/np.max(msv_mean)
del tcur_temp1, tcur_temp2, msv_temp
fig,ax=plt.subplots(2,1)
ax[0].imshow(tcur_avef, extent=[-config.maxlag,config.maxlag,nwin,0],aspect='auto',vmin=-0.001,vmax=0.001)
ax[0].set_title(str(nccomp)+"-component average")
ax[0].set_ylabel('Window number')
ax[0].set_xlabel('Lag-time (sec)')
ax[1].imshow(msv_mean, extent=[-config.maxlag,config.maxlag,nwin,0],aspect='auto', norm=LogNorm(vmin=0.00001, vmax=1))
ax[1].set_title(str(nccomp)+'-component averaged Mean-squared value')
ax[1].set_xlabel('Lag-time (sec)')
ax[1].set_ylabel('Window number')
plt.tight_layout()
half_npts=(npts_one_segmt-1)//2
fmsv_mean=np.zeros((nwin,2,half_npts+1))
for ntw in range(nwin):
sym=get_symmetric(msv_mean[ntw],half_npts)
fmsv_mean[ntw][0]=np.arange(0,config.maxlag+dt,dt)
fmsv_mean[ntw][1]=sym
Parameters for getting the sum of squared residuals (SSR) between observed energy densities (Eobs) and synthesized energy densities (Esyn)
fnum=1
nfreq_target=1
twinbe=np.ndarray((fnum,nfreq_target,2))
twinbe[:,:,0]=config_monito.atten_tbeg
twinbe[:,:,1]=config_monito.atten_tend
cvel=config_monito.cvel # Rayleigh wave velocities over the freqency bands
vdist=np.zeros((1)) # station distance
mfpx=np.zeros(1) # mean_free_path search array
intby=np.zeros(40) # intrinsic_b search array
nwindows=1 # number of sliced coda windows for fitting (1 or 6 fixed)
new_twin = np.zeros((fnum,nwindows,2))
print(new_twin.shape)
if nwindows == 1:
for aa in range(fnum):
for fb in range(nfreq_target):
new_twin[aa,0]=[twinbe[aa,fb,0],twinbe[aa,fb,1]]
else:
for aa in range(fnum):
for fb in range(nfreq_target):
tb=twinbe[aa,fb,0]
te=twinbe[aa,fb,1]
new_twin[aa] = window_determine(tb,te)
# getting the sum of squared residuals (SSR) between Eobs and Esyn
SSR_final=np.zeros((len(mfpx),len(intby)))
SSR=np.zeros((nwin,len(mfpx),len(intby)))
c=cvel
coda_single_band = new_twin[:,:,:] # coda window for the targeted frequency band
for ntw in range(nwin):
# get the mean of the mean squared value (MSV) for the coda window
fmsv_mean_single = np.zeros((1,half_npts+1))
fmsv_mean_single[0] = fmsv_mean[ntw,1,:]
# parameters for getting the sum of squared residuals (SSR) between Eobs and Esyn
para={ 'vdist':vdist, 'npts':npts_one_segmt, 'dt':dt, 'cvel':cvel, \
'mfp':mfpx, 'intb':intby, 'twin':coda_single_band, 'fmsv':fmsv_mean_single }
# call function get_SSR
SSR_final, mfpx, intby = get_SSR_codawindows(para)
SSR[ntw]=SSR_final
print(SSR.shape)
def plot_singwindow_fitting_result(mean_free,intrinsic_b,tt,Eobs,Esyn,fname,dist,twin,fmin,fmax,win_num):
plt.figure(figsize=(4,2))
plt.yscale('log', base=10)
intrinsic_Q=(2.0*np.pi*((fmin+fmax)/2))/intrinsic_b
pymax=np.max(Eobs[win_num-1,:-2]*5)
pymin=10**(-4)
plt.ylim( pymin , pymax )
plt.plot( tt, Eobs[win_num-1], "k-", linewidth=1)
plt.plot( tt, Esyn[win_num-1], "b--", linewidth=1)
plt.plot([twin[0],twin[0],twin[-1],twin[-1],twin[0]],[pymin, pymax,pymax,pymin,pymin],"r", linewidth=2)
plt.title("%s %.1fkm @%4.2f-%4.2f Hz, \nintrinsic b: %.2f, intrinsic Q: %.2f"
% ( fname,dist,fmin,fmax,intrinsic_b, intrinsic_Q))
plt.xlabel("Time [s]")
plt.ylabel("Energy density Amp")
plt.tight_layout()
plt.show()
def plot_multiwindow_fitting_result(mean_free,intrinsic_b,tt,Eobs,Esyn,fname,dist,twin,fmin,fmax,win_num):
nwindows=twin.shape[0]
pymax=np.max(Eobs[:-2]*5)
pymin=10**(-4)
fig, ax= plt.subplots(nwindows, figsize=(6,8))
for k in range(nwindows):
ax[k].set_yscale('log', base=10)
ax[k].set_ylim( pymin , pymax )
ax[k].plot( tt, Eobs[k], "k-", linewidth=1)
ax[k].plot( tt, Esyn[k], "b--", linewidth=1)
ax[k].plot([twin[k,0],twin[k,0]], [0, pymax], 'r--', label=f'[{twin[k,0]:.2f}, {twin[k,1]:.2f}] sec')
ax[k].plot([twin[k,1], twin[k,1]], [0, pymax], 'r--')
ax[k].legend(loc='upper right')
# ax[k].set_xlim(0, tt[-20])
ax[0].set_title("Window no. %d %s @%4.2f-%4.2f Hz, intrinsic b: %.2f, mean free path: %.2f" \
% ( win_num, fname,fmin,fmax,intrinsic_b, mean_free ) )
ax[-1].set_xlabel("Lag time (sec)")
ax[-1].set_ylabel("Energy density Amp")
plt.tight_layout()
plt.show()
Getting optimal fit in grid-searching
# getting the optimal value from the SSR
result_intb=np.zeros((nwin))
result_mfp=np.zeros((nwin))
Eobs=np.ndarray((fnum, nwin, nwindows, half_npts+1))
Esyn=np.ndarray((fnum, nwin, nwindows, half_npts+1))
scaling_amp=np.ndarray((nwin,nwindows))
fmin=freq1
fmax=freq2
wfcen=2.0*np.pi*((freq1+freq2)/2.0)
for ntw in range(nwin):
fmsv_mean_single = np.zeros((fnum, half_npts+1))
fmsv_mean_single[0] = fmsv_mean[ntw,1,:]
# parameters for getting the sum of squared residuals (SSR) between Eobs and Esyn
para={ 'fmin':fmin, 'fmax':fmax, 'vdist':vdist, 'npts':npts_one_segmt, 'dt':dt, 'cvel':cvel, \
'mfp':mfpx, 'intb':intby, 'twin':coda_single_band, 'fmsv':fmsv_mean_single, \
'SSR':SSR[ntw] , 'sta':sta_pair }
# call function get_SSR
result_intb[ntw], result_mfp[ntw], Eobs[fnum-1, ntw], Esyn[fnum-1, ntw], scaling_amp[ntw] = get_optimal_Esyn(para)
if ntw == 32:
# plotting fitting results
if nwindows==1:
plot_singwindow_fitting_result(result_mfp[fb], result_intb[fb],
fmsv_mean[fnum-1,0,:], Eobs[fnum-1, fb], Esyn[fnum-1, fb],
sta_pair, vdist, coda_single_band[0], fmin, fmax, nwindows)
else:
plot_multiwindow_fitting_result(result_mfp[fb], result_intb[fb],
fmsv_mean[fnum-1,0,:], Eobs[fnum-1, fb], Esyn[fnum-1, fb],
sta_pair, vdist, coda_single_band[0], fmin, fmax, nwindows)
intQ=np.zeros((nwin))
intQ=wfcen/result_intb
fig,ax=plt.subplots(2,1,figsize=(6,4))
ax[0].plot(result_intb, label='intrinsic b')
ax[0].grid(True)
ax[0].set_title('Estimated intrinsic absorption parameter b')
ax[0].set_xlabel('Window number')
ax[0].set_ylabel('b')
ax[1].plot(intQ, label='Q')
ax[1].set_yscale("log")
ax[1].grid(True)
ax[1].set_title('Estimated intrinsic Q')
ax[1].set_xlabel('Window number')
ax[1].set_ylabel('Q value')
plt.tight_layout()
# Save config parameters
monito_config_fn='monito_config.yml'
config_monito.save_yaml(monito_config_fn)
Step 6: Output results as a csv file#
# Restore calendar time from cc_time array
#cal_time=win_time[:nwin]
cal_time=win_time[:len(win_time)//3]
print(len(cal_time),results_dvv.shape,result_intb[:].shape, intQ.shape )
import pandas as pd
fieldnames = ['time', 'dvv','err','int_b','wfcen', 'Q']
fcsv="Monitoring_output.csv"
data={
'time': cal_time,
'dvv': results_dvv,
'err': results_err,
'int_b': result_intb[:],
'wfcen': np.full((nwin),wfcen),
'Q': intQ[:],
}
df=pd.DataFrame(data)
df.to_csv(fcsv,columns=fieldnames,sep=',',index = None, header=True, float_format="%.4f" )
import matplotlib.dates as mdates
fig,ax=plt.subplots(4,1,figsize=(6,8))
t=[datetime.strptime(d,'%Y-%m-%dT%H:%M').strftime('%Y-%m-%dT%H:%M') for d in cal_time]
t=pd.to_datetime(t)
ax[0].plot_date(t, results_err, '.-', label='error of dv/v (%)')
ax[0].set_title('Truncate estimated error')
ax[0].set_ylabel('%')
ax[1].plot_date(t, results_dvv, '.-', label='dv/v (%)')
ax[1].set_title('Average dv/v')
ax[1].set_ylabel('%')
ax[2].plot_date(t, result_intb[:], '.-', label='intrinsic b')
ax[2].set_title('Estimated intrinsic absorption parameter b')
ax[2].set_ylabel('intrinsic b')
ax[3].plot_date(t,intQ[:],'.-', label='Q')
ax[3].set_title('Estimated Q')
ax[3].set_ylabel('Q value')
ax[3].set_xlabel('Time')
ax[3].set_yscale('log')
for k in range(4):
ax[k].xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%dT%H:%M'))
ax[k].set_xlim(np.datetime64(t[0]), np.datetime64(t[-1]))
ax[k].xaxis.set_major_locator(mdates.DayLocator(interval=7))
ax[k].tick_params('x',labelrotation=20)
ax[k].grid(True)
plt.tight_layout()
Save the output csv file on S3-bucket
my_s3bucket="s3://YOUR_S3-bucket/"
command="aws s3 cp "+fcsv+" "+my_s3bucket
print(command)
#os.system(command)
command="aws s3 cp "+xcorr_config_fn+" "+my_s3bucket
print(command)
#os.system(command)
command="aws s3 cp "+monito_config_fn+" "+my_s3bucket
print(command)
#os.system(command)